京东在数据发掘方面对推荐技术的优化

京东集团**副总裁张晨总结:京东是一家以互联网科学**的网络零售企业,零售是它的基因,而零售最根本的是要给用户做好服务,京东可以通过技术手段把服务体验提升更多。

物流已经成为京东的核心竞争力,在今年618大促期间,有大量的商品实现了当日达,要让物流更快可以通过大数据的方式来实现,例如对某个居住小区的消费偏好进行分析,可以预先判断哪些商品最畅销,把商品放在小区附近的配送站,当有消费者下单,便可实现配送,这样能提升用户体验。

提升用户体验的第二方面,是在大数据的基础上实现的精准推送。零售企业对商品是否畅销的一个判断是周转率,而京东要实现提升周转率便是对商品的精准推送,“千人千面”产品体现的是这样的思路,京东商城研发部“推荐搜索部”刘尚堃表示:“在当前推荐位的情况下,再提升40%、50%的效能是能做到的,因为京东个性化首页产品上线的时间并不长。”

张晨认为,数据量越大,后发的价值越大,因为京东的商品大多数属于自营,货品有来源、质量有保障、交易是真实的,这些让京东成为“中国互联网企业里数据最好的公司之一,用这些优质的数据反过来服务好用户,可挖的细节太多,是一件做不完的事情。”


京东的数据主要两大类,用户行为数据和基于内容的数据。京东会根据用户的行为数据构建用户画像,比如是不是有小孩,是不是男性,在京东的生命周期怎么样,促销的敏感度如何,在家还是单位购物多,购买率的等级是什么?京东会根据用户的行为做推荐,这大多是通过离线数据计算的。此外,系统还会根据用户的实时行为进行推荐,比如判断出用户喜欢浏览牙刷的品类,喜欢电动牙刷,而且偏好声波类电动牙刷。

通过“共现矩阵”的办法,京东推荐系统可以度量商品到商品的、用户到用户的商品、商品到商品的相似指数。比如用户对某个商品的分值比较高,浏览的分值比较高,购买的分值更高。通过这些办法,可以找到比较贴近其需求和爱好的产品推荐给消费者,在这些基础算法之外,京东还会应用**算法提升推荐的效果。

京东还会通过一些模型进行推荐,比如用户的购买力模型、周期商品购买模型、LDA模型等。例如,京东现在有大量第三方商家,会存在有“一品多商”的问题,京东就会用图片相似等方法做过滤。

在排序上,京东会进行两级预估,先预估CTR(点击率),再预估CVR(转化率),由此进行排序。这是如何实现的呢?对于任何一个商品,京东都认为它具备品牌、中心词、类目、扩展属性等指标,可以用销售量来度量。每个商品和商品之间有一张购买的网,每个商品的pagerank也可以使用,这个指标不但考虑了数量问题,还考虑了网状关系,考量的指标还有评论数、好评度、浏览深度等。拿一个实际的例子来说,如果某用户购买产后塑身产品,那么孕妇装虽然有关联度,但这种关系会被剧烈地降低权重,因为逻辑上是先怀孕后生产再塑身。

京东个性化与排序平台部**总监邹宇分享了对冷启动用户的处理方法。所谓的“冷启动”是指一个新用户,系统中没有他的行为数据。这个时候,京东做法就是根据人以群分的归类法则。比如基于社交关系推荐。当然如果这些没有,可能找更粗的人群分群的方式,比如性别、年龄、地域。当然最极端的情况下,完全没有,那就根据最近的热点进行类别多样化精选推荐的策略,把每一类当下**的商品拼在一起推荐给新用户去看,这其实是试探的过程,然后根据用户的交互反馈,慢慢向用户主信息上收敛。

重视实验与监控迅速确认算法优劣

京东推荐平台部总监刘思喆介绍,在推荐系统中,京东非常重视实验与监控。京东是算法和架构分离,架构可以管顶层工程,算法就是每天尝试各种各样的特征、数据、规则,以及流量最终的效果怎么样。

京东推荐的实验系统采用了外部的页面配置。流量实时生效,而且流量比例是可以任意分配的。简单修改某一个线上实验,它的流量就可以实现秒级线上更新,第二天甚至实时可以看到结果。京东的分流策略常用两种,**种是随机,每次刷新看到的结果可能都不一样,比如十组实验,每一版都是10%的概率呈现;第二种就是相对固定,一旦看到**次结果之后,就保证你以后看到的结果都是这个样子。京东的实验系统支持版本回溯,算法工程师一旦出现误配,可以找回相关的版本和权限。

除了实时实验之外,京东实验系统同样有离线debug平台支持,输入参数可以是一个或多个SKU,也可以是类,进行不同实验的结果召回,定位不同实验的效果。这样算法工程师可以通过自测几个小的例子,迅速找到自己的算法,在没有切流量之前问题在哪,或者到底好在什么地方。

持续优化迭代提升推荐系统价值

刘思喆认为,算法优化必须逐步迭代。不可能忽然上一个很牛的算法保证效果提高50%,工程师之间的相互交流有助于提高算法优化效果。

而通过数据的挖掘,京东也会发现,某些用户从来不点任何推荐,不点任何广告,也就是对这个东西完完全全不感冒。那可能京东也有可能对该用户隐藏推荐系统。“用户如果能深度地参与到推荐系统里面来,当然可能是无意识的,这时推荐系统才真正做到了极致。”

邹宇认为,京东大数据的价值越来越大。举例来说,互联网展示广告的点击率通常能到千分之一就不错了,转化率更低,通常是万分之几。但京东的搜索转化率高于这种广告转化率的几个数量级,因此,京东的数据会有越来越高的价值,京东的推荐系统在推动业务成长方面的作用也将越来越重要。

以上就是安达网络工作室对于《京东在数据发掘方面对推荐技术的优化 》的一些看法。更多内容请查看本栏目更多内容!

本文相关话题: 京东 数据挖掘 推荐
版权声明:本文为 安达网络工作室 转载文章,如有侵权请联系我们及时删除。
相关文章
教你如何搭建及优化站点

新手在建站时没有经验总是要走很多弯路,依据我的一些建站经历,特别整理出一些方法给大家分享下......

搞定网站SEO优化的五步曲

随着互联网的快速发展,SEO在一个网站的地位变得越来越重要,那么如何搞定一个网站的SEO优化呢?下面小编通...

网站首页权重为什么比内页权重更高?

网站首页权重为什么比内页权重更高?很多朋友都会发现网站的首页权重一般都是最高的,无论内页做的多好,首...

新浪是怎样解决死链的?新浪死衔接解决经验共享

新浪是怎么处理死链的?每个网站或多或少都会有死链接,主要是因为页面的修正或者其他的原因,该怎么处理死...

百度勾销了百度快照工夫后怎样替换友谊链接?

百度取消了百度快照时间后怎么交换友情链接?之前我们交换友情链接的时候,都先看一下百度快照的日期,但是...

网站内容的首创与伪原创对优化有哪些优缺陷?

网站内容的独创与伪原创对优化有哪些优缺点?很多做优化的朋友认为网站原创越多越好,但是是不是独创就没有...

需求提交

客服服务